A review of exposure assessment methods for epidemiological studies of health effects related to industrially contaminated sites

1 Institute for Risk Assessment Sciences, Utrecht University (The Netherlands)
2 Environmental Health Reference Centre, Public Health Institute, University of Porto (Portugal)
3 Occupational Health Department, Faculty of Medicine, University of Tirana (Albania)
4 “Vasile Alecsandri” University of Bacău (Romania)
5 Instituto de Investigación Biosanitaria de Granada (ibis GRANADA), University of Granada (Spain)
6 CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid (Spain)
7 Oncology Unit, Virgen de las Nieves University Hospital, Granada (Spain)
8 National Laboratory of Energy and Geology (LNEG), Amadora (Portugal)
9 EpilUnit, Public Health Institute, University of Porto (Portugal)
10 GeoBioTec, Geosciences Department, University of Aveiro, Santiago Campus (Portugal)
11 Sustainable Health, Flemish Institute for Technological Research (VITO), Boeretang (Belgium)
12 Environmental Hazards and Emergencies Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, London (UK)
13 National Public Health Institute, Budapest (Hungary)
14 Unit of Environmental and Social Epidemiology, Department of Environment and Health, Italian National Health Institute (ISS), Rome (Italy)
15 Swiss Tropical and Public Health Institute, Basel (Switzerland)
16 University of Basel, Basel (Switzerland)
17 Water and Health Laboratory, Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol (Cyprus)
18 Department Public Health Solutions, National Institute for Health and Welfare, Helsinki (Finland)
19 Department of Environmental Health, Estonian Health Board, Tallinn (Estonia)
20 James Hutton Institute, Craigiebuckler, Aberdeen, Scotland (UK)
21 “Petru Maior” University of Târgu Mureș (Romania)
22 Department of Environment, University of the Aegean, Mytilene (Greece)
23 Institute of Pharmaceutical Chemistry, Environmental Engineering Laboratory, Aristotle University of Thessaloniki (Greece)
24 HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Thessaloniki (Greece)
25 Escuela Andaluza de Salud Pública, Granada (Spain)
26 Hellenic Agricultural Organization, General Directorate of Agricultural Research, Institute of Industrial and Forage Crops, Larissa (Greece)
27 Institute of Family Medicine and Public Health, University of Tartu (Estonia)
28 Center for Health Technology and Services Research (CINTESIS), Porto (Portugal)
29 Nutrition and Metabolism, NOVA Medical School, Faculty of Sciences Medicine, University Nova de Lisboa (Portugal)
30 University School for Advanced Study (IUS), Pavia (Italy)
31 Institute for Risk Assessment Sciences, Utrecht University (The Netherlands)
32 Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia (Italy)

Corresponding author: Gerard Hoek; g.hoek@uu.nl

ABSTRACT

BACKGROUND: this paper is based upon work from COST Action ICSHNet. Health risks related to living close to industrially contaminated sites are a public concern. Toxicology-based risk assessment of single contaminants is the main approach to assess health risks, but epidemiological studies which investigate the relationships between exposure and health directly in the affected population have contributed important evidence. Limitations in exposure assessment methods in epidemiological studies by comparing exposure assessment methods in epidemiological studies and risk assessments.

OBJECTIVES: to examine exposure assessment methods that have been used in epidemiological studies on ICSs and to provide recommendations for improved exposure assessment methods.

METHODS: after defining the multi-media framework of exposure related to ICSs, we discussed selected multi-media models applied in Europe. We provided an overview of exposure assessment in 54 epidemiological studies of ICSs and health identified for this review.

RESULTS: we identified 10 multi-media models used in Europe primarily for risk assessment. Recent models incorporated estimation of internal biomarker levels. Predictions of the models differ particularly for the routes ‘indoor air inhalation’ and ‘vegetable consumption’. Virtually all of the 54 hazardous waste studies used proximity indicators of exposure, based on municipality or zip code of residence (28 studies) or distance to a contaminated site (25 studies). One study used human biomonitoring. In virtually all epidemiological studies, actual land use was ignored. In the 52 additional studies on contaminated sites, proximity indicators were
applied in 39 studies, air pollution dispersion modelling in 6 studies, and human biomonitoring in 9 studies. Exposure assessment in epidemiological studies on incinerators included indicators (presence of source in municipality and distance to the incinerator) and air dispersion modelling. Environmental multi-media modelling methods were not applied in any of the three groups of studies.

CONCLUSIONS: recommendations for refined exposure assessment in epidemiological studies included the use of more sophisticated exposure metrics instead of simple proximity indicators where feasible, as distance from a source results in misclassification of exposure as it ignores key determinants of environmental fate and transport, source characteristics, land use, and human consumption behaviour. More validation studies using personal exposure or human biomonitoring are needed to assess misclassification of exposure. Exposure assessment should take more advantage of the detailed multi-media exposure assessment procedures developed for risk assessment. The use of indicators can be substantially improved by linking definition of zones of exposure to existing knowledge of extent of dispersion. Studies should incorporate more often land use and individual behaviour.

Keywords: industrially contaminated sites, exposure assessment, dispersion modelling, biomonitoring, epidemiology

KEYPOINTS

What is already known
- Health risks related to living close to industrially contaminated sites (ICSs) are a public concern.
- Risk assessment of single contaminants is the main approach to assess health risks, but epidemiological studies have contributed important evidence.
- Limitations in exposure assessment have substantially contributed to uncertainty about associations found in epidemiological studies.

What this paper adds
- We conducted a review to examine exposure assessment methods used in epidemiological studies of ICSs in comparison with risk assessment.
- The majority of studies used proximity indicators of exposure; air pollution dispersion modelling, soil monitoring, and human biomonitoring have been used in a small number of epidemiological studies.
- Detailed multi-media environmental modelling methods, such as those used for regulatory risk assessment, were not applied.
- Recommendations for refined exposure assessment in epidemiological studies were developed, including taking more advantage of the procedures developed for risk assessment, improvement of proximity indicators and the need for validation studies using personal exposure or human biomonitoring to assess misclassification of exposure.

INTRODUCTION

Health risks for the general population residing near industrially contaminated sites (ICSs) are a public concern\(^1\)\(^{-5}\) At the Sixth Ministerial Conference on Environment and Health held in Ostrava in June 2017, waste and contaminated sites were declared one of the seven priority areas for the European environmental policy agenda.\(^6\) Local soil contamination in 2011 was estimated for 2.5 million potentially contaminated sites in the 39 Countries reporting to the European Environment Agency (EEA).\(^7\) EEA estimated that 342,000 of these sites were highly likely contaminated.\(^7,8\) Waste disposal and treatment, and industrial and commercial activities were the two major sources of soil contamination, together responsible for about 70% of the contaminated sites.\(^7\) A comprehensive analysis of research and policies related to contaminated land can be found in a recent book.\(^2\)

The environmental performance of European industry has improved in the last decades. However, the sector has still a significant role in causing pollution to air, water, and soil, as well as generation of waste;\(^9\) between 2008 and 2012, the cost of damage to health and the environment from air pollution from the 14,000 most polluting facilities in Europe was estimated at between 329 billion and 1,053 billion euros and 50% of the costs occurred as a result of emissions from just 147 facilities (1% of these facilities).

The need of a European response to the environmental health issues posed by contaminated sites was originally raised in the framework of two technical meetings organized by the World Health Organization.\(^10\)

Industrially contaminated sites have been defined as: “Areas hosting or having hosted industrial human activities which have produced or might produce directly or indirectly (waste disposals) chemical contamination of soil, surface or ground-water, air, food-chain, and resulting or being able to result in human health impacts”.\(^1\)

The definition encompasses more settings than the EEA definition, which is limited to contaminated soil.\(^8\) ICSs include a wide diversity of settings, such as (municipal and industrial) waste landfills, large industrial complexes (steel factories, petrochemical industries), waste incinerators, harbour areas, and mining and quarrying extraction activities operating in the past and/or still in operation. An illustration of the diversity can be found in the 44 national priority contaminated sites identified in Italy and studied in the Italian SENTIERI project.\(^11\)

Industrial agriculture can be included in the definition as well, bringing in pesticide exposures. A first common feature of an ICS is that multiple environmental media (air, water, soil, and food-chain) are typically affected. The main emission of a source can be directly to the soil (leaking drums on a landfill), to outdoor
air (incinerators, steel factories), to water or a combination of these three. Subsequently, other environmental media may be affected by transport processes, such as deposition of airborne metals on soil or volatilization of soil contaminants, such as benzene into indoor and outdoor air. A second common feature is that a cocktail of exposure to multiple chemicals is typically observed. Frequently occurring chemicals around ICSs include heavy metals (e.g., arsenic, cadmium, lead, chromium), volatile organic components (VOC, such as benzene, toluene), polycyclic aromatic hydrocarbons (PAH, such as Benzo(a)pyrene), dioxins, mineral oil, chlorinated hydrocarbons (CHC, such as trichlorethene and polychlorinated biphenyls – PCBs), and pesticides. Concern about potential health effects of contaminated sites currently mainly focuses on populations living close to a site, as it has been estimated that the impact on the overall population is limited. Two main approaches have been used to assess health risks of ICSs: risk assessment and epidemiology. The first approach is based on risk assessment comparing measured or modelled human intake of specific chemicals with typically toxicologically based guidelines for pollutant doses. The risk assessment methodology is the main approach to determine health risks of specific sites in practice and has the advantage that it estimates exposure, so lengthy and expensive public participation is not required. This is particularly useful for sites that are not (currently) populated. To make such predictions, detailed modelling is required, which in many cases cannot be validated. In many European Countries and in the USA, detailed procedures for risk assessment have been developed. The Public Health Assessment approach designed by the US Agency for Toxic Substances and Disease Registry (ATSDR) supplements risk assessment with population health data and incorporates public participation. The focus of these assessments is on specific sites and the population living near that site. The second approach involves epidemiological studies that investigate the relationships between exposure and health directly in the affected population. Epidemiological studies may address some of the limitations of typical risk assessment, including the single pollutant based assessment in the common multi-pollutant context of ICSs; the interaction between chemical and non-chemical stressors; the reliance on toxicological data requiring the use of somewhat arbitrary safety factors. The notion that below a certain intake value no (adverse) health effects occur is also questionable, as has been demonstrated extensively for outdoor air pollution. Limitations of epidemiological studies around specific contaminated sites, including often small population size, have been discussed. Epidemiological studies of ICSs can be distinguished into:

- studies that describe health profiles of populations living in an ICS using routinely available data at area level;
- studies that analyse associations between ICS exposures and health outcomes using individual level studies to test a-priori hypotheses;
- surveillance studies of temporal patterns of population health. Because of the typical complex multi-pollutant, multi-media exposure setting of contaminated sites, assessment of human exposure to pollutants has been challenging, both for risk assessment and epidemiological studies. In a recent systematic review of health effects of hazardous waste, limitations in exposure assessment were listed as a major issue in reliably assessing health risks of hazardous waste. The need for improvement of exposure assessment was also identified in a review of epidemiological studies of major industrial areas. To our knowledge, no recent comprehensive review of exposure assessment relevant for epidemiological studies of ICSs has been published. In 1991, a review by the National Research Council of US studies of hazardous waste sites was published; it included recommendations for improved exposure assessment. Recommendations stated that exposure assessment needs to take into account all possible media and must try to include direct methods (personal exposure monitoring) and indirect methods (micro-environmental monitoring and mathematical models).

OBJECTIVES
The aim of this review is to examine exposure assessment methods for epidemiological studies of industrially contaminated sites. We compared exposure assessment in epidemiological studies and site-specific and screening risk assessments. The goal of this comparison is to provide recommendations for further development of exposure assessment methods for epidemiological studies to enable more informative epidemiological studies. The review was prepared in the framework of the COST Action Industrially Contaminated Sites and Health Network (ICSHNet) (https://www.icshnet.eu/).

METHODS
We started with defining a conceptual framework of human exposure related to contaminated sites. Then, we discussed in some detail selected regulatory multi-media models applied in specific European Countries to assess soil contamination supplemented with recently-developed multi-media research tools where these
illustrate new developments in exposure assessment. We specifically assessed multi-media exposure assessment methods starting from contaminated soil, because this is an important category of ICS. We next provided an overview of the type of study design and exposure assessment in three groups of epidemiological studies of contaminated sites. First, we evaluated 54 studies included in a recent systematic review of health effects of hazardous waste16 and expanded the evaluation of exposure assessment methods compared to the original review. We further include results of a 2013 systematic review of exposure assessment approaches of 41 epidemiological studies on incinerators.19 Finally, we performed a systematic search in PubMed using the search terms: (contaminated OR polluted) (area* OR site* OR facilit* OR community* OR factory OR factories*) health epidemiology industrial, so identifying an additional 52 studies (from 582 abstracts). We performed the additional search to expand the scope of studies beyond waste and incinerators. We do not claim that our search found all studies, as the literature is very large and different search terms result in different sets of studies. The main purpose of the review is to discuss principles of methods, not a quantitative overview of methods of exposure assessment methods. We did not include studies of radiation from nuclear power plants. We further excluded studies of generic contamination without a specific local source (e.g., on arsenic in groundwater). We only included studies in the English, Italian, and Dutch language (the vast majority was in English). Based on these assessments, we formulate a series of recommendations for refined exposure assessment in epidemiological studies of ICSs.

CONCEPTUAL FRAMEWORK OF EXPOSURE

There are a number of conceptual frameworks for exposure assessment; some have been adopted by regulatory authorities, while others have been used primarily for research activities. For example, a conceptual framework for exposure assessment for Public Health Assessments has been provided by ATSDR.13 Figure 1 illustrates the ATSDR framework with drums serving as an example of a source for initially soil contamination, followed by contamination of other environmental media. Figure 2 depicts the exposure framework related to studies performed to assess human exposure and health risks related to a Portuguese mining area. Figure S1 (see on-line supplementary material) shows the framework in an early report of the US National Research Council (NRC).18
Figure 2. Exposure pathways of the Portuguese Panasqueira mining area. Source: Candeias 2013.

Figure 3. Exposure routes of the Dutch CSOIL model. Sources: Swartjes 2015; Brand 2007 (see additional references).
Similar frameworks form the basis of European models, such as CSOIL, S-Risk and CLEA (figure 3). These frameworks illustrate the multi-media exposures. In the setting of contaminated soil, the distinction between exposure and concentration in the environment is critically important. Exposure requires contact of humans with pollutants in the environment. Therefore, exposure is determined by the interaction between environmental contamination and human receptors. When focused on soil, the human exposure of a population living near a site depends on the following groups of factors:

- type of site, affecting the specific pollutant and magnitude of contamination;
- macro-level factors such as topography, hydrology, and meteorology that influence fate and transport of pollutants;
- soil properties including pH, organic carbon content, ground water flows;
- pollutant properties, including solubility, vapour pressure, reactivity;
- mechanisms for transformation and transport of pollutants between environmental media;
- use of the soil, such as growth of vegetables for consumption;
- intake factors such as inhalation rate, consumption of locally grown vegetables

Soil ingestion, vegetable consumption, and vapour inhalation are often the most important pathways, but this depends critically on the contaminant.

EXPOSURE ASSESSMENT BY MULTI-MEDIA MODELS FOR RISK ASSESSMENT

Exposure assessment methods for human health risk assessment of contaminated land have recently been reviewed. In the review, both monitoring and modelling of human exposure is discussed. In this section, we focus on modelling methods.

A comparison of exposure models used in different EU Countries for screening risk assessment has been published by the Joint Research Centre on the basis of input of a large group of national experts. Carlon and co-workers reported substantial differences in model predictions, especially related to the choice of which receptors needed to be protected and which exposure pathways were included. Particularly, the inclusion of ‘indoor air exposure’ and ‘consumption of home-grown vegetables’ had an important impact on total human exposure estimates. For the risk calculations, the inclusion of background pollution from sources other than the contaminated site (e.g., smoking for Cd) contributed to differences in risk estimation. A comparison of model predictions from 7 European models, including CSOIL and CLEA, showed two orders of magnitude differences in calculated total exposure in a series of scenarios. The differences were particularly large for the exposure pathways ‘indoor air inhalation’ and ‘consumption of contaminated vegetables’. For more mobile and volatile components, differences between models were largest.

Table 1 lists multi-media modelling methods applied in different Countries for risk assessment purposes identified within the COST Action. A detailed description of the models can be found in the on-line supplementary material. The table does not cover all European models, e.g., of the 7 models evaluated by Carlon, only CSOIL and CLEA are included. This table includes mostly models that are applied in soil regulatory frameworks, but also three research models used for human exposure and risk assessment (Hough model, Merlin-EXPO, and INTEGRA), where the Hough model has been applied in regulatory settings. Figure 3 shows the exposure routes taken into account by the Dutch CSOIL model as an example. The CSOIL model starts with representative concentrations of the pollutant in the soil and then models the distribution of a pollutant over the different soil phases (solid, water, air), transfer to contact media, and finally exposure to humans. The model assesses contamination of different environmental media, including soil, water, indoor and outdoor air, and uptake by vegetation. The model specifies different exposure scenarios related to the use of the land, with residential land use with garden as the default.

Differences between models

The models focus on exposure of local populations and not on the contribution of the collection of ICSs to overall contamination of the environment. The models use similar frameworks, but differ in the level of detail included in the model. Contamination of ground water is not included in the models, except for S-Risk, Risknet, and RBCA. In CSOIL and S-Risk, leaching of contaminants in water pipelines is included. The level of detail of characterizing the food exposure pathway differs, with the HOUGH modelling the most detailed one. The food pathway often includes only vegetables and not animals. S-Risk, Merlin, and INTEGRA also include animals in the food pathway. The Merlin Expo and INTEGRA models include physiologically-based pharmacokinetic (PBPK) modelling of contaminant levels in target tissues in the human body, whereas the other models are limited to calculate intake. In view of the application in epidemiology, an important difference among models is that some allow user-defined input values, whereas others do not. Some models can be used for site-specific and generic assessments. We did not repeat
RISKNET (Italy)
Characterization of human health risk in contaminated sites. Derivation of threshold concentrations to have an acceptable risk. Starting from soil concentration greater than the threshold of potential contamination pollutants, the model is used to predict soil and groundwater and indoor air concentration using exposure indicators and concentrations at point of exposure. From top soil: inhalation of indoor and outdoor air (gas, particles). Inhalation of contaminated soil and sand particles, leading to inhalation from gaseous ingress into buildings, dermal exposure. From groundwater: inhalation of indoor and outdoor air, inhalation of contaminated soil and sand particles, leading to inhalation from gaseous ingress into buildings, dermal exposure. Oral intake of soil and indoor settled dust particles; intake of vegetables; intake of animal products; ingestion of dust particles; Intake of water (i.e., drinking water or and groundwater). Inhalation outdoor and indoor vapour contaminants, inhalation indoor and outdoor particles; ingestion of dust particles; absorption from water during bathing and showering. Oral intake of contaminated food; ingestion of contaminated soil and air particles. Inhalation of contaminated air, soil, and water. Inhalation of contaminated indoor air, soil, and water. Soil concentration; samples for land use; site, soil properties. Residential, industrial. Carcinogenic risk and hazard index (also cumulative). Threshold concentrations to have an acceptable risk. For more information, visit www.reconnet.net.

S-Risk (Belgium)
Calculation of generic or site-specific human health risk concentrations and interpretation of health risk at contaminated sites. Starting with concentrations in soil, the distribution over solid, liquid, and gaseous phases in soil is estimated and used as the basis for simulating a variety of exposure pathways. S-Risk is a model that can be used generally or site-specific. Oral intake of soil and indoor settled dust particles; intake of vegetables; intake of animal products; ingestion of dust particles; Intake of water (i.e., drinking water or and groundwater). Inhalation outdoor and indoor vapour contaminants, inhalation indoor and outdoor particles; ingestion of dust particles; absorption from water during bathing and showering. Oral intake of contaminated food; ingestion of contaminated soil and air particles. Inhalation of contaminated air, soil, and water. Inhalation of contaminated indoor air, soil, and water. Soil concentration; samples for land use; site, soil properties. Residential, industrial. Carcinogenic risk and hazard index (also cumulative). Threshold concentrations to have an acceptable risk. For more information, visit www.s-risk.be.

POPs Toolkit
Provide basic information for managing contaminated sites with persistent organic pollutants (POPs) and other hazardous chemical substances using a human health risk assessment approach. Starting with tools for site prioritization for risk assessment and field sampling procedures, the human health risk assessment (HHRA) for non-carcinogens and incremental lifetime cancer risk (LRCA) for carcinogens can be calculated and as a result risk management tools or policies can be applied. Accidental soil ingestion, soil ingestion, ingestion of contaminated particles and dermal contact with contaminated soil. Concentration of contaminant in soil/dust/leaching water (particles in the air, accidental soil/waste), food ingestion, food ingestion rate for adult, absorption factor for the gastrointestinal tract, surface area of exposed soil, soil loading to exposed skin, area of exposure, body weight of receptor, life expectancy (not used for non-carcinogens). Not specified. Hazard Quotient, Incremental Lifetime Cancer Risk, total dose. For more information, visit http://www.popsstoolkit.com/.

RAS - The Risk Assessment System (USA but used in Europe)
Web-based system to disseminate risk tools on chemicals, biological and radiological (separately) and supply information for risk assessment activities. Offers essential tools and information for chronic and sub-chronic exposure risk. Soil, sediments and air (outdoor and indoor) by ingestion, dermal contact and inhalation. Tap water and surface water by ingestion and dermal contact. Soil, sediments, water and air concentrations; scenarios for land, site, soil, air properties; soil properties, gaseous chemical and biological concentrations. Residential, renovation, and workers (indoor, outdoor; composite, excavation, construction, design, and agricultural). Non-carcinogenic and carcinogenic risk. For more information, visit http://www.etheras.com.

MERUN
Estimation of contaminant concentrations in human tissues and organs. Contaminants: concentrations from food, drinking water, soil, air, and water are collected (there is also the possibility to model the contaminant pathways). Then a PBPK model estimates concentrations in human tissues and organs. Inhalation of indoor and outdoor air (gas, particulate), ingestion of soil, food, drinking water, dermal contact with contaminated soil. Concentrations in environmental media. Matrix physical parameters, exposure indices, PBPK model parameters (toxicokinetic parameters and characteristics of population). Concentration in human tissues and organs. Concentration in soil is also achievable. For more information, visit http://merlinpopstoolkit.com.

INTEGRA
Multi-route, multi-pathway exposure model. Starting from environmental releases or environmental media concentrations, exposure through multiple pathways and routes for various age and gender groups, external and internal exposure are calculated. Exposure is also calculated backwards from HBM data. Inhalation of indoor and outdoor air (gas, particulate), dietary ingestion (food, water, beverages), non-dietary ingestion (soil, house dust, object to mouth), dermal contact with consumer materials and cosmetics, rubbing off dust from surfaces, showering. Release rate in various environmental media, environmental media concentrations, physicochemical properties, toxicokinetic properties. Industrial, agricultural, urban. Concentration in various environmental media. Concentration in human tissues and organs. Concentration in urine is also achievable. For more information, visit http://integra.eu.

Table 1. Selected multi-media exposure modelling tools applied in Europe for human risk assessment.

<table>
<thead>
<tr>
<th>MODEL</th>
<th>PURPOSE</th>
<th>PRINCIPLE</th>
<th>CONSIDERED EXPOSURE ROUTES</th>
<th>INPUT</th>
<th>SCENARIOS FOR LAND USE</th>
<th>OUTPUT</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLEA v.0.7 (UK)</td>
<td>Characterization of human health risk in contaminated sites with persistent organic pollutants and other hazardous chemical substances. Derivation of threshold concentrations to have an acceptable risk.</td>
<td>Starting with concentrations in soil, the distribution over solid, liquid, and gaseous phases in soil is estimated and used as the basis for simulating a variety of exposure pathways.</td>
<td>Ten exposure pathways are considered including direct and indirect ingestion of soil and dust ingestion via contaminants incorporated into crops and grown on soil.</td>
<td>Soil concentration; samples for land use, site, soil properties.</td>
<td>Default residential with garden; as other.</td>
<td>Concentration in contact media of an individual pollutants, dose, risk.</td>
<td>Brand 2007</td>
</tr>
<tr>
<td>Accredited RBCA (Canadian used in UK in conjunction with CLEA)</td>
<td>Risk assessment of petroleum contaminated soil.</td>
<td>Starting with concentrations in soil, the distribution over solid, liquid, and gaseous phases in soil is estimated and used as the basis for simulating a variety of exposure pathways.</td>
<td>Ten exposure pathways are considered including direct and indirect ingestion of soil and dust ingestion via contaminants incorporated into crops and grown on soil.</td>
<td>Soil concentration; samples for land use, site, soil properties.</td>
<td>Default residential with garden; as other.</td>
<td>Concentration in contact media of an individual pollutants, dose, risk.</td>
<td>Jeffries 2009</td>
</tr>
<tr>
<td>HOUGH Model</td>
<td>Research model used to understand hazardous substances in soil.</td>
<td>Starting with soil concentrations, estimates a distribution over a range of inorganic and organic contaminants via various food-chain related exposure pathways.</td>
<td>Ten exposure pathways are considered including direct and indirect ingestion of soil and dust ingestion via contaminants incorporated into crops and grown on soil.</td>
<td>Soil concentration; samples for land use, site, soil properties.</td>
<td>Default residential with garden; as other.</td>
<td>Concentration in contact media of an individual pollutants, dose, risk.</td>
<td>Hough 2002; Sunderland 2018</td>
</tr>
<tr>
<td>RISKNET (Italy)</td>
<td>Characterization of human health risk in contaminated sites with persistent organic pollutants and other hazardous chemical substances. Derivation of threshold concentrations to have an acceptable risk.</td>
<td>Starting from soil concentration greater than the threshold of potential contamination pollutants, the model is used to predict soil and groundwater and indoor air concentration using exposure indicators and concentrations at point of exposure.</td>
<td>Ten exposure pathways are considered including direct and indirect ingestion of soil and dust ingestion via contaminants incorporated into crops and grown on soil.</td>
<td>Soil concentration; samples for land use, site, soil properties.</td>
<td>Default residential with garden; as other.</td>
<td>Concentration in contact media of an individual pollutants, dose, risk.</td>
<td>www.reconnet.net</td>
</tr>
<tr>
<td>S-Risk</td>
<td>Calculation of generic or site-specific human health risk concentrations and interpretation of health risk at contaminated sites.</td>
<td>Starting with concentrations in soil, the distribution over solid, liquid, and gaseous phases in soil is estimated and used as the basis for simulating a variety of exposure pathways.</td>
<td>Ten exposure pathways are considered including direct and indirect ingestion of soil and dust ingestion via contaminants incorporated into crops and grown on soil.</td>
<td>Soil concentration; samples for land use, site, soil properties.</td>
<td>Default residential with garden; as other.</td>
<td>Concentration in contact media of an individual pollutants, dose, risk.</td>
<td>www.s-risk.be</td>
</tr>
<tr>
<td>POPs Toolkit</td>
<td>Provide basic information for managing contaminated sites with persistent organic pollutants (POPs) and other hazardous chemical substances using a human health risk assessment approach.</td>
<td>Starting with tools for site prioritization for risk assessment and field sampling procedures, the human health risk assessment (HHRA) for non-carcinogens and incremental lifetime cancer risk (LRCA) for carcinogens can be calculated and as a result risk management tools or policies can be applied.</td>
<td>Ten exposure pathways are considered including direct and indirect ingestion of soil and dust ingestion via contaminants incorporated into crops and grown on soil.</td>
<td>Soil concentration; samples for land use, site, soil properties.</td>
<td>Default residential with garden; as other.</td>
<td>Concentration in contact media of an individual pollutants, dose, risk.</td>
<td>www.popsstoolkit.com/</td>
</tr>
<tr>
<td>RAS - The Risk Assessment System (USA but used in Europe)</td>
<td>Web-based system to disseminate risk tools on chemicals, biological and radiological (separately) and supply information for risk assessment activities.</td>
<td>Offers essential tools and information for chronic and sub-chronic exposure risk.</td>
<td>Ten exposure pathways are considered including direct and indirect ingestion of soil and dust ingestion via contaminants incorporated into crops and grown on soil.</td>
<td>Soil concentration; samples for land use, site, soil properties.</td>
<td>Default residential with garden; as other.</td>
<td>Concentration in contact media of an individual pollutants, dose, risk.</td>
<td>www.etheras.com</td>
</tr>
<tr>
<td>MERUN</td>
<td>Estimation of contaminant concentrations in human tissues and organs.</td>
<td>Contaminants: concentrations from food, drinking water, soil, air, and water are collected (there is also the possibility to model the contaminant pathways).</td>
<td>Ten exposure pathways are considered including direct and indirect ingestion of soil and dust ingestion via contaminants incorporated into crops and grown on soil.</td>
<td>Soil concentration; samples for land use, site, soil properties.</td>
<td>Default residential with garden; as other.</td>
<td>Concentration in contact media of an individual pollutants, dose, risk.</td>
<td>www.merlinpopstoolkit.com</td>
</tr>
<tr>
<td>INTEGRA</td>
<td>Multi-route, multi-pathway exposure model.</td>
<td>Starting from environmental releases or environmental media concentrations, exposure through multiple pathways and routes for various age and gender groups, external and internal exposure are estimated. Exposure is also calculated backwards from HBM data.</td>
<td>Ten exposure pathways are considered including direct and indirect ingestion of soil and dust ingestion via contaminants incorporated into crops and grown on soil.</td>
<td>Soil concentration; samples for land use, site, soil properties.</td>
<td>Default residential with garden; as other.</td>
<td>Concentration in contact media of an individual pollutants, dose, risk.</td>
<td>Brand 2007</td>
</tr>
</tbody>
</table>

*All models, except MERUN-PSTOOL and INTEGRA, are multi-media models: starting from contaminated land. MERUN-PSTOOL and INTEGRA were included as they have been applied to assess exposure due to contaminated land.

*Some references can be found in the list “Additional references”.

*Additional references can be found in the list “Additional references”.

*Some references can be found in the list “Additional references”.

*Some references can be found in the list “Additional references”.
the detailed quantitative comparison between models and model predictions made by the experts in 2007.21,22 We suspect that the differences between models are still applicable. Input parameters of the models differ substantially, including especially compound-specific properties, human characteristics, and parameters describing physicochemical transfer processes.3

Particularly, modelling of indoor air concentrations and consumption of locally grown contaminated food has considerable uncertainty.3 Problems for assessment of exposure through vegetable consumption include the lack of data on locally grown vegetables and particularly the calculation of the concentration in plants. Despite large efforts to model speciation in the soil, uptake by roots and transport within the plant, reliable estimates of metals in plants are rarely achieved. Organic components can be better modelled.3 A tiered approach has been proposed to assess health risks of consumption of vegetables grown on cadmium contaminated soil.23 The approach starts with establishing whether vegetables are locally grown, then applies generic and site-specific modelling tools, and ends with measurements of contaminant levels if health risks are judged to be possible.23 Modelling of indoor air concentrations from contaminated groundwater or soil is highly uncertain. A validation study documented several orders of magnitude difference between modelled and measured concentrations.5 Measurements of concentrations in indoor air are often highly variable and affected by other indoor sources. Reliable validation requires repeated measurements.

EXPOSURE ASSESSMENT IN EPIDEMIOLOGICAL STUDIES

Exposure assessment in epidemiological studies may deviate from that in risk assessment. Distance to specific land-fills may be useful in epidemiology, but not in risk assessment. Figure 4 shows a general typology linked to the causal chain from source to intake by humans, addressing both modelling and monitoring at different levels. Figure S3 (see on-line supplementary material) shows a typology focused on contaminated sites, including a qualification of the performance.

Epidemiological studies on contaminated sites have extensively used ecological study designs to assess potential health effects.16,24 This implies that the health status of populations exposed to contaminated sites is compared with the health status of reference populations not exposed to contaminated sites using (small) area-level data. No individual level data on health, confounders and exposure are used. In this design, exposure assessment cannot be refined as no individual data are used. Fewer individual level studies, such as cohort, case-control and cross-sectional studies, have been conducted. In these study designs, more detailed exposure assessment is feasible. Examples are an individual cohort study based on administrative data on landfill sites in the Lazio Region (Central Italy)25 and a multisite study on residents near incinerators in the Emilia-Romagna Region (Northern Italy).26 Table 2 lists the frequency of application of exposure assessment methods in order of increasing complexity for three groups of epidemiological studies: hazardous waste sites, incinerators, and the additionally identified general ICS studies. Figure S4 (see on-line supplementary material) shows which environmental media have been characterized in epidemiological studies. Tables S1 and S2 (see on-line supplementary material) present the exposure assessment of individual epidemiological studies of ICSs on hazardous waste in the systematic review by Fazzo16 and

<table>
<thead>
<tr>
<th>METHOD</th>
<th>METRICS</th>
<th>NUMBER OF STUDIES APPLYING METHOD FOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proximity indicators</td>
<td>Distance to a site from GIS Residence in municipality with an ICS</td>
<td>Hazardous waste studies (No. 54)* Contaminated sites studies (No. 52)** Incinerator studies (No. 41)***</td>
</tr>
<tr>
<td>Environmental modelling</td>
<td>Dispersion model for air pollution multi-media models</td>
<td>53; of which: * 25 distance * 28 municipality</td>
</tr>
<tr>
<td>Environmental monitoring</td>
<td>Contaminants in soil, air, water, food</td>
<td>0</td>
</tr>
<tr>
<td>Personal exposure assessment</td>
<td>Direct (monitoring) or indirect (integrating time activity with environmental monitoring)</td>
<td>0</td>
</tr>
<tr>
<td>Biota monitoring</td>
<td>Hg in fish; Metals in lichens, pine needles, mosses indoors, outdoors</td>
<td>0</td>
</tr>
<tr>
<td>Human biomonitoring</td>
<td>Pb in blood, Cd in urine, hair</td>
<td>1</td>
</tr>
</tbody>
</table>

* Studies in systematic review, 16 details in table S1 including references.16
** Additional studies identified for the current review, details in table S2 including references.
*** Studies identified in a systematic review of incinerator studies.16
* All air pollution dispersion modelling.

Table 2. Methods of exposure assessment in selected epidemiological studies of contaminated sites.
on contaminated sites in general. For references of the individual incinerator studies, we refer to the review by Cordioli,19 to which we did not add additional evaluation. Virtually, all of hazardous waste studies (53 out of 54) have used indicators of exposure, based on municipality or zip code of residence (28 studies) or distance to a contaminated site (25 studies). A limited number of studies reported monitoring data to support exposure status (figures S4). Detailed environmental modelling methods, such as those used for regulatory risk assessment, were not applied, possibly because of a lack of input data, particularly the soil contents of contaminants. One study in 32 11-13-year-old children used human biomonitoring (metals in hair) to link to intelligence quotient (IQ).27 In virtually all epidemiological studies, the actual land use tends to be ignored, while it is an important component of exposure assessment in screening and site-specific risk assessment.

The 52 additional studies covered a wide range of ICSs and major pollutants from multiple Countries, including major industrial facilities, asbestos ore, industrial accidents (table S2). In the 52 additional studies on contaminated sites, proximity indicators were applied in 39 studies. Biomonitoring was used in 9 studies; 6 studies air pollution dispersion modelling; 1 study directly used measured metal pollution in soil in the epidemiological analysis.28 A series of studies from Spain used data from the European Pollutant Release and Transfer Register (EPRTR)29 to identify industrial sites with specific contaminants. In these ecological studies, distance to the industrial sites was used as exposure indicator.30-32 Although monitoring was infrequently used directly, many studies included environmental monitoring to support that significant contamination occurred. We did not include studies that assessed specific industrial pollutants without mentioning a specific contaminated site. An example of this large group of studies is a recent study on persistent organic pollutants (POPs).33 Two studies on Libby Montana asbestos-contaminated ore exposure used a questionnaire to identify activities with potential asbestos exposure. All other studies did not include time activity patterns, such as the place where people work, typically because of a lack of available data. Exposure assessment in epidemiological studies on incinerators included indicators (qualitative and distance to the incinerator) and air dispersion modelling.19 While the use of air dispersion modelling can be seen as an improvement on simply only using indicators of exposure, none of the studies used multi-media models or monitoring data in the epidemiological analysis. Furthermore, the studies differed in the level of detail of the residential information (address, full postal code or municipality/crude postal code). Given the reliance on location of residence as an indicator of exposure, the level of uncertainty associated with the metric used to describe location of residence (e.g., 6-figure postal code vs. 4-figure postal code) could well have a significant influence on levels of exposure misclassification.

Exposure indicators

The use of simple indicators of exposure, such as residence in municipality with an ICS, is linked to the (typically small) area design of most studies with no available information on individuals. Exposure indicators do not provide a quantitative measure of specific pollutants, in contrast to risk assessment where estimates of exposure are typically derived from modelled or measured con-

27 In virtually all epidemiological studies, the actual land use tends to be ignored, while it is an important component of exposure assessment in screening and site-specific risk assessment.

28 A series of studies from Spain used data from the European Pollutant Release and Transfer Register (EPRTR)29 to identify industrial sites with specific contaminants. In these ecological studies, distance to the industrial sites was used as exposure indicator.30-32 Although monitoring was infrequently used directly, many studies included environmental monitoring to support that significant contamination occurred. We did not include studies that assessed specific industrial pollutants without mentioning a specific contaminated site. An example of this large group of studies is a recent study on persistent organic pollutants (POPs).33 Two studies on Libby Montana asbestos-contaminated ore exposure used a questionnaire to identify activities with potential asbestos exposure. All other studies did not include time activity patterns, such as the place where people work, typically because of a lack of available data.

Exposure assessment in epidemiological studies on incinerators included indicators (qualitative and distance to the incinerator) and air dispersion modelling.19 While the use of air dispersion modelling can be seen as an improvement on simply only using indicators of exposure, none of the studies used multi-media models or monitoring data in the epidemiological analysis. Furthermore, the studies differed in the level of detail of the residential information (address, full postal code or municipality/crude postal code). Given the reliance on location of residence as an indicator of exposure, the level of uncertainty associated with the metric used to describe location of residence (e.g., 6-figure postal code vs. 4-figure postal code) could well have a significant influence on levels of exposure misclassification.

Exposure indicators

The use of simple indicators of exposure, such as residence in municipality with an ICS, is linked to the (typically small) area design of most studies with no available information on individuals. Exposure indicators do not provide a quantitative measure of specific pollutants, in contrast to risk assessment where estimates of exposure are typically derived from modelled or measured con-

27 In virtually all epidemiological studies, the actual land use tends to be ignored, while it is an important component of exposure assessment in screening and site-specific risk assessment.

28 A series of studies from Spain used data from the European Pollutant Release and Transfer Register (EPRTR)29 to identify industrial sites with specific contaminants. In these ecological studies, distance to the industrial sites was used as exposure indicator.30-32 Although monitoring was infrequently used directly, many studies included environmental monitoring to support that significant contamination occurred. We did not include studies that assessed specific industrial pollutants without mentioning a specific contaminated site. An example of this large group of studies is a recent study on persistent organic pollutants (POPs).33 Two studies on Libby Montana asbestos-contaminated ore exposure used a questionnaire to identify activities with potential asbestos exposure. All other studies did not include time activity patterns, such as the place where people work, typically because of a lack of available data.

Exposure assessment in epidemiological studies on incinerators included indicators (qualitative and distance to the incinerator) and air dispersion modelling.19 While the use of air dispersion modelling can be seen as an improvement on simply only using indicators of exposure, none of the studies used multi-media models or monitoring data in the epidemiological analysis. Furthermore, the studies differed in the level of detail of the residential information (address, full postal code or municipality/crude postal code). Given the reliance on location of residence as an indicator of exposure, the level of uncertainty associated with the metric used to describe location of residence (e.g., 6-figure postal code vs. 4-figure postal code) could well have a significant influence on levels of exposure misclassification.

Exposure indicators

The use of simple indicators of exposure, such as residence in municipality with an ICS, is linked to the (typically small) area design of most studies with no available information on individuals. Exposure indicators do not provide a quantitative measure of specific pollutants, in contrast to risk assessment where estimates of exposure are typically derived from modelled or measured con-

27 In virtually all epidemiological studies, the actual land use tends to be ignored, while it is an important component of exposure assessment in screening and site-specific risk assessment.

28 A series of studies from Spain used data from the European Pollutant Release and Transfer Register (EPRTR)29 to identify industrial sites with specific contaminants. In these ecological studies, distance to the industrial sites was used as exposure indicator.30-32 Although monitoring was infrequently used directly, many studies included environmental monitoring to support that significant contamination occurred. We did not include studies that assessed specific industrial pollutants without mentioning a specific contaminated site. An example of this large group of studies is a recent study on persistent organic pollutants (POPs).33 Two studies on Libby Montana asbestos-contaminated ore exposure used a questionnaire to identify activities with potential asbestos exposure. All other studies did not include time activity patterns, such as the place where people work, typically because of a lack of available data.

Exposure assessment in epidemiological studies on incinerators included indicators (qualitative and distance to the incinerator) and air dispersion modelling.19 While the use of air dispersion modelling can be seen as an improvement on simply only using indicators of exposure, none of the studies used multi-media models or monitoring data in the epidemiological analysis. Furthermore, the studies differed in the level of detail of the residential information (address, full postal code or municipality/crude postal code). Given the reliance on location of residence as an indicator of exposure, the level of uncertainty associated with the metric used to describe location of residence (e.g., 6-figure postal code vs. 4-figure postal code) could well have a significant influence on levels of exposure misclassification.

Exposure indicators

The use of simple indicators of exposure, such as residence in municipality with an ICS, is linked to the (typically small) area design of most studies with no available information on individuals. Exposure indicators do not provide a quantitative measure of specific pollutants, in contrast to risk assessment where estimates of exposure are typically derived from modelled or measured con-
centrations of contaminants in various environmental media. Studies substantially differ in what indicators of exposure have been used. Distance to a site/incinerator – especially when calculated from residential addresses – is a better indicator than the simple presence/absence of a site in a municipality. Discussion of exposure assessment and consistency of findings can further be found in a review of epidemiological studies using proximity to environmental hazards including ICSs. The degree of misclassification related to the use of indicators of exposure is often not documented in the studies. Two studies in the UK and Italy, respectively, compared distance to incinerators with dispersion model calculations using ADMS-urban. Assuming that dispersion models provide a better assessment of exposure, both studies documented significant exposure misclassification, particularly when distance is used as a categorical variable which is common in epidemiological studies. Both studies showed substantial anisotropy, that is concentration patterns are not well described by simple concentric circles, related to prevalent wind directions and terrain. The misclassification is probably even more severe for industrial sites with higher stacks than incinerators. Mohan et al. evaluated different methodologies to assess exposures to atmospheric pollutants from a landfill site in epidemiological studies and concluded that dispersion modelling would be an improvement on basic proxies like distance. However, there is significant scope to improve indicators of exposure using simple rule-based approaches that take into account, e.g., prevailing wind and/or topographical features. Regardless, more methodological work on characterizing misclassification of exposure is needed. Errors in exposure assessment by using simple proxies might have a strong Berkson error component, which leads to loss of precision, but not bias when applied in epidemiological studies.

Although the majority of studies used indicators of exposure in the statistical analysis of relationships with health, data on environmental contamination or human biomonitoring based on previous studies was available in a limited number of papers. For example, in the studies of contaminated sites in Ferrara (Emilia-Romagna Region, Northern Italy) and Love Canal (New York State, USA), the analysed exposure measure was based on indicator variables, but in both studies environmental monitoring data was available to document significant environmental levels of specific contaminants. A limitation is that often environmental data are available only for the exposed population, but not for the reference population. An exception is a study related to an oil field waste site in New Mexico, documenting significant differences in environmental and human biomarker levels between exposed and control towns.

Epidemiological studies have refined exposure assessment by incorporating the type of hazardous waste site in the analysis, using data on sources or contaminant levels in the soil or other media. Duration of residence has been incorporated as another refinement. Advantages of indicators include the ease of obtaining the information. Additionally, distance to the source characterizes multiple exposure pathways and pollutants compared to measuring a specific pollutant in a specific medium. Conceptually, this has advantages over traditional risk assessment that tends to deal with one pollutant at a time rather than treating the exposure as a mixture. The use of exposure indicators would benefit from better linking with known dispersion patterns based on models or measurements. Both studies on contaminated land and incinerators have used very different distance categories to label an area as exposed. A recent review of 77 epidemiological studies of air pollution around major industrial facilities illustrated that distance to the source was used in the majority of studies and that the distance categories were very different. Studies should further attempt to include validation sub-studies to assess validity. As an example, human biomonitoring documented that the exposure surrogates based upon distance around the Love Canal site were related to measured chlorobenzene levels in serum.

Environmental modelling

Except for dispersion modelling of air pollution around incinerators, environmental modelling is not often used in epidemiological studies. A study conducted around a waste landfill site in Italy used dispersion modelling of hydrogen sulfide (H\textsubscript{2}S) to improve exposure assessment based on distance to a site only. A study in the Rome Longitudinal Cohort used air dispersion modelling to assess residential exposure from an incinerator, landfill, and refinery in the epidemiological analysis. A validation study in France indicated dispersion modelling as a reliable proxy for dioxin exposure from a point source. The detailed multi-media models used in risk assessment have not been applied in epidemiological studies of hazardous waste, incinerators, and contaminated sites in general.

Environmental monitoring

Environmental monitoring has been used only in one study as a direct measure of exposure in the epidemiological analysis. In a Swedish study, cadmium (Cd) and lead (Pb) in soil near glasswork plants were used to assess individual exposure. As stated in the section on indicators, environmental monitoring has been extensively used to document that relevant exposure occurs, for example in studies in Love Canal (USA) and Priolo (Sicily Region,
Southern Italy). This status is very different from the epidemiological literature on outdoor air pollution where monitoring has been extensively applied.

There is a large literature of environmental monitoring around contaminated sites, typically related to risk assessment. We take as an example a study in Portugal on a mining area with over 100 years of exploration, where researchers monitored soils, stream sediments and superficial waters, road dusts, biota, vegetables, drinking and irrigation waters on the impacted site and in control areas. The geochemistry signature of the mining works is markedly visible in all analysed media, including vegetables and water for direct human consumption. In parallel, human biomonitoring (urine, blood, hair, and nail samples) surveillance was performed. The populations of the studied 4 villages are strongly dependent on the mine, but also on the use of soil (agriculture) and water (drinking, irrigation and recreation). Figure 2 shows potential exposure pathways related to contamination from the mine.

Personal exposure monitoring

Personal exposure monitoring (PEM) has not been applied in the reviewed epidemiological studies of ICSs. We did not consider studies of radiation related to nuclear power plants. Direct monitoring is difficult to conceptualize, except for air pollution exposure assessment. Settings that would lend themselves to PEM include incinerators and contaminated land, where indoor air contamination is an important pathway. PEM is often labour intensive and thus expensive. Currently, PEM may therefore be applied only in relatively small populations, but with the development of larger scale application of low-cost sensors may become feasible in the near future. In studies with physiological endpoints requiring a relatively small population, PEM could be a direct exposure metric. PEM could additionally be used as a validation tool for easier-to-obtain exposure metrics, as is common in air pollution exposure assessment.

Indirect personal exposure assessment by linking measurements in relevant environmental media (e.g., home, drinking water, soil, food) with individual time activity patterns has also not been applied. Except for a study on asbestos, data on individual behaviour of subjects or actual land use has not been considered.

Human biomonitoring

Ten studies have used human biomonitoring (HBM), of which one on hazardous waste, directly in the epidemiological analysis. A study of the Tar creek Superfund site reported on the association between hair levels of manganese (Mn), arsenic (As), and Cd and neuropsychological test scores of 32 11-13-year-old children. Two papers assessing a Portuguese mining area reported associations between As, Mn, and Pb in toenails and in blood with genotoxic and immunological markers of 122 subjects. A study in 129 children aged 3-13 years in two exposed (smelter) and one control town in Bulgaria reported haematological effects in relation to Pb and Cd in blood. In a cohort study of 242 children living in three towns at different distance to a contaminated water national priority site, mercury (Hg) in hair was associated with neuropsychological endpoints. These studies are smaller studies using physiological endpoints instead of morbidity and mortality. HBM may additionally be used for validation of easier-to-measure exposure metrics. Exposure surrogates based upon distance around the Love Canal site were related to measured chlorobenzene levels in serum. HBM provides the most direct documentation of actual population exposure related to a specific contaminated site. In the complex setting of ICSs, an attractive feature is that HBM integrates exposure from different exposure pathways, which may otherwise be difficult to assess. HBM further takes into account time activity of subjects. Depending on the biomarker, HBM reflects longer term exposure compared to environmental monitoring which is affected by short-term variations. Repeated environmental sampling is needed to obtain an average exposure in indoor air, for example. Potential problems with the interpretation of HBM data include that measured biomarkers levels may be affected by other sources, e.g., smoking. Because HBM data do not distinguish between sources of exposure, the data may be of limited use for risk management. HBM can be expensive both in sampling collection and analysis and, therefore, sometimes is feasible only in limited population sizes. Measurements of heavy metals in urine are not expensive and sampling urine is also relatively easy to perform. Because HBM is an integrated measurement, HBM may limit the need for measurements in different environmental compartments, depending on whether exposure assessment is for an epidemiological study or for practical risk assessment. The physico-chemical and pharmacokinetic characteristics of the contaminants influence the target analyte as well as the biological matrix in which it is expected to be found; e.g., organochlorine pesticides are highly lipophilic and persistent chemicals that are expected to be found in fatty compartments, such as adipose tissue, but also in serum, although levels in the two matrices might have different biological meanings. Given the rapid metabolism of organophosphate pesticides, biomonitoring programmes commonly target dialkyl phosphate metabolites instead of the parent compound.

An issue is how to use information available for a sample to...
assess individual exposure of the whole population. A common design in risk assessment is to select the most susceptible or vulnerable group as a study population. If the most susceptible group is safe, then other population groups will be safe too. One possibility for epidemiological studies is to derive a predictive empirical model that is developed based upon measured biomarkers in a sample of the population and important exposure related predictor variables. Willmorn have developed a linear regression model for measured blood lead levels (BLLs) in children in relation to proximity to a lead smelter. Residential distance to the smelter, log of residential soil lead concentration, and child’s age were statistically significant factors for predicting elevated BLLs in children living near a North Lake Macquarie lead smelter. A Polish study developed a regression model for Pb and Cd in blood in children and local industrial and traffic and individual lifestyle. Three studies in Southern Spain developed models for human adipose tissue PCBs and hexachlorobenzene and serum organochlorine concentrations. The review is prepared in the framework of the COST action on Industrially Contaminated Sites and Health Network (ICSHNet) (https://www.icshnet.eu/).

POTENTIAL APPLICATION OF MULTI-MEDIA EXPOSURE ASSESSMENT MODELS IN EPIDEMIOLOGICAL STUDIES

Application of the models has shown the relative contribution of different exposure routes to the total intake for key pollutants. This knowledge could be used in epidemiological studies to inform the choice of better proxies of exposure. The direct application of the models in exposure assessment in epidemiology seems a promising improvement for epidemiological studies as the models can be used with default values and thus do not require detailed input data that may not be readily available for epidemiological studies. One requirement is the availability of soil monitoring data, which is often available as a motivation to start a health investigation. The INTEGRA model is able to estimate soil concentrations starting from emissions in other media (e.g., air) and to estimate the complete food chain (including vegetation, meat, dairy products, and fish) residues. Most models allow the user to adapt input values to tailor the assessment for site-specific assessment. A limitation is the large differences in model predictions. Most models were designed to provide population risks and may not be useful to assess differences in individual exposure of subjects living in the same neighbourhood. The models may therefore be most useful for studies of multiple sites, where assessment of a group average exposure may be useful. Merlin-Expo and INTEGRA have been applied to assess individual exposure. These tools use a PBPK model to assess contaminant levels in the body and could represent an option to improve full-chain exposure assessment in epidemiological studies. Two studies in Belgium documented realistic agreement between modelled and measured Pb and As levels in blood, though with a low correlation of individual levels.

EVALUATION AND RECOMMENDATIONS

Epidemiological studies have mostly used simple indicators of exposure, such as residence in a municipality with an ICS or distance to an incinerator, in the epidemiological analysis without actual modelling or monitoring of specific pollutants. Air dispersion models have been applied especially in incinerator studies. The more sophisticated deterministic multi-media models used in screening risk assessment of contaminated sites have not been applied in epidemiological studies so far. A few typically smaller studies of physiological health endpoints have applied human biomonitoring to assess exposure. Based on the discussion in the previous sections, we formulate recommendations for potential improvement of exposure assessment in epidemiological studies of ICSs. We note that there are more purposes of exposure assessment than application in epidemiological studies, exposure assessment alone may be sufficient to result in policy decisions. Here we focus our discussion to epidemiological studies (see last section). To decide which is the optimal exposure assessment method depends on the design of the epidemiological study. Key features include type of health effects (chronic, acute), population size, single or multiple sites, and – last but not least – budgetary constraints.

Epidemiological studies using administrative health data at the area level and indicators of exposure, despite their limitations, represent a useful first approach to highlight priority areas and generate hypotheses. Epidemiological studies using administrative health data using geographic information system (GIS) could be improved by using individual data rather than area data, allowing more detailed exposure (and confounder) assessment. This development has already occurred in studies of health effects of air pollution using administrative data on mortality, morbidity, and cancer. We further assert that studies using physiological health endpoints in addition to clinically manifest morbidity/mortality would be extremely useful as they can be conducted in smaller populations and thus allow more detailed exposure assessment. The following recommendations were developed:

1. Proximity indicators will be applied in future despite its limitations. The application of indicators of exposure can be improved by using:
• continuous distance based metrics instead of presence/absence of an ICS in a municipality or other administrative unit;
• using residential address instead of municipality of residence to improve individual exposure assessment;
• knowledge on spatial extent of contamination to make less arbitrary choices when categories of distance to a contaminated site are used.
2. Epidemiological studies should make more use of land use data (GIS overlay with residential data) to account for differences in population including use of land.
3. More validation of exposure assessment methods is needed to allow assessment of misclassification of exposure. This applies to indicators of exposure, but also to modelled and measured environmental exposures. We recommend smaller validation studies using personal exposure monitoring or human biomonitoring to assess the validity of exposure metrics. Both exposed and reference populations need to be included, which is currently often not the case.
4. Methodological work of the impact of exposure measurement error on estimated health risks is needed, similar to work done in epidemiological studies of outdoor air pollution.
5. Epidemiological studies should consider using more extensively the multi-media exposure assessment models used in risk assessment, either directly or indirectly to better define the main potential exposure routes for different pollutants.
6. For the ‘air inhalation’ route around large point sources such as incinerators, dispersion modelling is preferable compared to using distance as a proxy.
7. The food exposure pathway is difficult to model. Additional work is needed, including characterization of the fraction of locally produced food and contamination in various foods. Monitoring is often the most practicable approach to more accurately characterizing exposures via the food chain, but limits investigation to a minimal number of potentially harmful agents.
8. Indoor air inhalation pathway is difficult to characterize both by modelling and monitoring. Additional work is needed, particularly important for semi-volatile compounds.
9. As exposure to contaminants from ICSs is often correlated in space with other environmental sources such as motorized traffic, inclusion of other sources in the analysis will increase the validity of the study.
10. Human biomonitoring and personal exposure monitoring should be considered particularly in well selected study populations assessing both exposure and physiological health endpoints. Human biomonitoring has the advantage to result in integrated measurement of all exposure routes.
11. The use of internal dosimetry models can provide further insights regarding the actual biologically effective dose that reaches the tissues. In addition, route- and age-dependent bioavailability differences are accounted for, providing a more refined metric for the effective dose than external exposure.
12. Application of various omics techniques may be useful to address the complex exposure pattern around an ICSs.70 ‘Wild’ proposed the concept of the ‘exposome’ to more comprehensively assess human exposure to environmental stressors. Methods that have been proposed to assess the internal exposome include metabolomics, proteomics, adductomics.72
13. Contaminated sites include communities that have been exposed to excessive concentrations of hazardous substances and exposure assessment should consider the ethical dimension of the human health research that is conducted in the context of contaminated sites. An ethical analysis makes the rationale for decisions transparent and provides a basis for evaluating observed outcomes as a function of the rationale provided for past actions.

FINAL REMARKS
This paper is an original contribution aimed to address one of the main objectives of ICSHNet COST Action: the identification of suitable strategies, methods, and tools for exposure assessment in ICSs. The results will be used to develop Action guidance documents on how to deal with the complex environmental health scenarios of ICSs across Europe. We hold there is an over-reliance on risk assessment in making decisions around management of ICSs. Epidemiological studies may provide useful information on actual population health risks of ICSs. Swartjes3 noted that guideline values are typically stricter when epidemiological data is lacking and hence large safety factors are used. Management and remediation of ICSs is extremely costly, so some good epidemiological studies showing there is limited adverse health outcomes associated with an ICS could save a lot of money. The opposite may also occur, that is health effects may be detected in epidemiological studies where risk assessment modelling suggests no effect. Therefore, we need more and improved epidemiological studies of ICSs. Advantages of epidemiological studies include that health effect of the realistic mixture of contaminants is studied directly in humans. Interaction between chemical and non-chemical exposures (increased susceptibility due to social deprivation near an ICS) is taken into account in local studies. Epidemiological studies of a specific site also face intrinsic limits.15 Issues include that the population size may not be large enough to detect small effects on morbidity and mortality. Exposures to an ICS may be correlated with...
other environmental exposures and, therefore, difficult to disentangle. Adequate adjustment for potential confounders is another major issue. Environmental health issues in ICs often involve marked inequalities. These sites, being in general not attractive residential places, tend to be inhabited by people of lower socioeconomic level, and deprivation gradients are often seen around contaminated sites. In ICs, there is the concurrence of multiple residential and occupational contaminants, social disadvantages, and additional burden imposed at the individual level by unhealthy lifestyles. Addressing exposure assessment strategies to different population subgroups can help in better characterizing the exposures and health scenarios in ICs; to this purpose, an effort should be made to integrate, rather than to adjust for, information deriving from exposures experienced in ICs by workers employed in the industrial activities, who are also part of the resident population; exposure profiles of residents not occupationally exposed, in particular women and elderly people; children, who are not occupationally exposed nor significantly exposed to other typical adult lifestyles, but who have some behaviours that could increase their exposure to specific pollutants (i.e., ingestion of soil contaminants). This approach, when attainable, can help in identifying the sources of environmental contaminants. Moreover, this is part of public health relevance as it could help in addressing inequalities in exposure to contaminants of toxicological concern, also in absence of direct information on local health impacts.

Conflict of interest disclosure: the Authors declare they have no conflict of interest.

REFERENCES AND NOTES

32. Mustielle V, Fernández MF, Martin-Olmedo P, et al. Human adipose tissue levels of persistent organic pollutants and metabolic syndrome components: Combining a...

ADDITIONAL REFERENCES

• Forand SP, Lewis-Michl EL, Gomez MI. Adverse birth outcomes and maternal exposure to trichloroethylene and tetrachloroethylene through soil vapor intrusion in New York State. Environ Health Perspect 2012;120(4):616-21.

• Helmfeld I, Berglund M, Löfman O, Wingren G. Health effects and exposure to polychlorinated biphenyls (PCBs) and metals in a contaminated community. Environ Int 2012;44:53-58.

• Vinkoor LC, Larson TC, Bateson TE, Brimball L. Exposure to asbestos-containing vermiculite ore and respiratory symptoms among individuals who were children while the mine was active in Libby, Montana. Environ Health 2010;9(1):201.

